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ABSTRACT

The nonlinear R1, problem is an unconstrained optimization

problem whose objective function is not differentiable everywhere, and

hence cannot be solved efficiently using standard techniques for

unconstrained optimization. The problem can be transformed into a

nonlinearly constrained optimization problem, but it involves many

extra variables. We show how to construct a method based on projected

Lagrangian methods for constrained optimization which requires successively

solving quadratic programs in the same number of variables as that of

the original problem. Special Lagrange multiplier estimates are used

to form an approximation to the Hessian of the Lagrangian function,

which appears in the quadratic program. A special line search algorithm

is used to obtain a reduction in the Z1 objective function at each

iteration. Under mild conditions the method is locally quadratically

convergent if analytical Hessians are used.
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A PROJECTED LAGRANGIAN ALGORITH0i FOR NONLINEAR 11 OPTIMIZATION

Walter Murray and Michael L. Overton

1. Introduction

The problem we wish to solve is

X. P min{F (x)Ix E Rn }
1X

m
where FI(X) If i(x) l

i-l

and the functions fi:R n  R1 are twice continuously differentiable.

The function F1 (x) is called the 2. function and 1iP is referred

to as the 2.1 problem. The 2.1 problem is an unconstrained optimi-

zation problem in which the objective function has discontinuous

derivatives and hence it is inappropriate to use a standard uncon-

strained minimization method to solve it. The problem is equivalent

to the following nonlinearly constrained problem in which both the

objective and constraint functions are twice continuously differ-

entiable:
m

ELP : min{ I u Ix E Rn, u E Rm}

i-i

subject to c()(x,u)>0, i 1,2,..., m; a -1,1,

c(r) (x,u) = ui - afi(x)

amngi



We could solve ELP using a method for the general nonlinear programming

problem, but this is very unattractive since m, the number of extra

variables, may L? large. A method can be derived which exploits the

special structure of problem ELP essentially reducing it back to a problem

with n variables. One special feature of ELP is that the Z 1 function

F1 is a natural merit function which can be used to measure progress

towards the solution of ELP. Such a merit function is not generally

available for the nonlinear programming problem without the introduction

of a parameter such as penalty parameter.

The method we adopt to solve £1P consists of two parts at

each iteration: (1) obtain a direction of search by solving and

perhaps modifying a quadratic program based on a projected Lagrangian

algorithm for ELP, and (2) take a step along the search direction

which reduces the 1 function. The general approach is similar to

that described for the minimax problem by Murray and Overton [15].

The structure of the quadratic program to be solved is however con-

siderably different from the minimax case and this is described in full

in subsequent sections. We use a special line search algorithm which

is closely related to the one used in the minimax case. This is

discussed in Section 7; the details may be found in [14].

A number of other algorithms have been proposed for solving the

nonlinear 11 problem. These will be discussed further in Section 9,

after our algorithm has been described in full. At the time of this

writing, no other algorithms related to projected Lagrangian methods
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using second order information have, to our knowledge, been published.

However, Bartels and Conn are currently doing some related work.

We note that no convexity assumptions are made about the functions

fi(x). We concern ourselves only with local minima.

1.1. Notation

All vectors are column vectors, but for convenience we will

write (x,u) for . Define (xu) to be a solution of ELP. It
*

follows that x is a solution to 9IP  and

* m *FI1(X) = u•
i-l

(k) (k) *

Let (x ,u k ) denote the k-th approximation to (x,u).

At each iteration of the algorithm x(k+l) ,u(k+l)) is obtained

by setting

x (k+l) - x(k) + ap and u (k+l) = If(x(k+l))I

where p is the direction of search in Rn and a, a positive scalar,

is the steplength, and the absolute value of a vector denotes the

vector of the absolute values of the components. Note that this choice

of (x(k+l), u(k+l)) immediately guarantees that all the points {(x)u

are feasible for ELP, i.e. c(0)(x(k)) > 0, i -1,...,m, a

It also follows that for each i, at least one of the pair of constraints

(C - ), c+1)) must have the value zero. We will be interested in

the case where the other constraint in the pair is also zero at the

3
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solution, i.e. the corresponding function f. is zero. Therefore at
1

any point x we define the active set of functions as those which we

think will have the value zero at the solution x, based on the infor-

mation at x. This set will usually include all functions with the

value zero at the point x and may also include some with nonzero

values. The exact procedure for selecting the active set at each iteration

will be discussed in Section 8 and procedures for modifying this choice

will be discussed in Section 5.

We define t (= t(x)) to be the number of active functions at

x and write the vector of active functions as f(x) E Rt. Define

th
E(x) to be the diagonal square matrix of order t whose i- diagonal

component is 1 if fi(x) > 0 and -1 otherwise. Define V(x) to be

the n x t matrix whose columns {vi(x)} are the gradients of the

active functions. Similarly we define f(x) E Rm - t to be the vector

of inactive functions at x and define f(x) and V(x) to be respec-

tively the (m-t) x (m-t) diagonal matrix of the signs corresponding to

f(x) and the n x (m-t) matrix of gradients of the inactive functions.

We also define u and u to be the subvectors of u corresponding to

and f.

We define the active constraints at x to be both constraints

of each pair corresponding to the active functions plus the one constraint

with zero value of each pair corresponding to the inactive functions.

We can order the active constraints so that the vector of active constraint

values is given by

44
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u E- (x) f (x)

(x) U^ u (x)

U + f (x)

with u -(x) ?(x), u -i(x) f(x), by definition of u. Define A(x)

to be the (m+n) x (m+t) matrix whose columns {a i are the active

constraint gradients. We can order the variables {u i so that

-VX () -Vo) (x)]

i(x) I 'M-t  0 0

0 It  It

Here I is the identity matrix of order s.5

We define Y(x) and Z(x) to be orthogonal matrices respectively

spanning the range and null spaces of V(x). Provided V(x) has full

rank we have that Y(x) has dimension n x t, Z(x) has dimension n x (m-t),

and

Y(x)T Y(x) - I t  Z(x)T Z(x) = In- t

T T
Y(x) Z(x) - V(x) Z(x) = 0

Let g be the gradient of tht objective function of ELP, i.e.

the (n+z)-vector:

g- 

(
e

where e (R7ht and e (R t are vectors of all ones.



The Lagrangian function associated with ELP is

-T- T^ T(x)

L(xu,X) = e u + e u - Xcx

where X ( Rm + t  is a vector of Lagrange multipliers. The gradient of

L(x,u,A) with respect to x is g - AX. Define WE  to be the Hessian

of the Lagrangian function with respect to (x,u). Then

WE = [0 03

where W is the Hessian of L(x,u,X) with respect to x only, i.e.

m+t 2-
W(x,X) X i V xc (X)

ixi

Define ZE  to be an orthogonal matrix spanning the null space of A,

i.e., A Z = 0. It follows from the definition of A that the first

n rows of ZE  can be taken to be Z, the matrix which is orthogonal

T
to V. Thus Z EZE, the Hessian of L(x,u,X) projected into the

null space of A, can also be written as Z TWz.

We will use pE to denote a vector in Rn+m whose first n

components are the direction of search vector p. We write

PE P

where p and p correspond to u and u.

6
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Often we will omit the arguments from the various vectors and

matrices f, V, A etc. when it is clear that they are evaluated at

(k)
x We use the notation A, V, Z to denote A, V, Z evaluated at

(x,u) with the active set of functions correctly chosen, i.e., con-

sisting of all those functions with the value zero at x.

1.2. Necessary and Sufficient Conditions

The necessary and sufficient conditions for (x,u) to be a

local minimum of problem ELP and therefore x to be a local minimum

of problem X 1P are simplifications of the general necessary and

sufficient conditions for the nonlinear programming problem. A

similar argument to that given in [15] shows that the first-order con-

straint qualification always holds for ELP. The conditions therefore

reduce to the following:

First-order necessary condition

If (x,u) is a local minimum of ELP then there exists a vector

* M+t
of Lagrange multipliers X ( R such that

g - AA - 0 and X > 0. (1.2)

Second-order necessary condition

If (x,u) is a local minimum of ELP and the second-order con-

*T * * *
straint qualification holds, then Z W(x,,A)Z, the projected Hessian of

the Lagrangian function, is positive semi-definite.

7



Sufficient condition

If the first-order necessary condition holds at (x,u), the

Lagrange multipliers are all strictly positive, i.e. X > 0, and

*T * * * *
Z W(x,X)Z is positive definite, then (x,u) is a strong local minimum

of ELP. Thus in terms of k1P, F1(x) < F1 (x) for all x such that

Ix-xl < 6 , for some 6 > 0.

In the case where all the {f are linear it is well-known that

a solution must exist with n active functions at x. Then normally

the matrix Z is null which implies the second-order conditions are

also null. The nonlinear problem, however, can have a unique solution

with anything from zero to n functions active at x.

2. Use of the Equivalent Problem ELP

At every iteration we wish the search direction p to be a

descent direction for F1, i.e.

Fj(x(k),p) < 0

,( ( k )

where F (X ,p) is the directional derivative

lim 1 (F( + hp) - Fl(X(k)

h-0 + h p a 1 ( b

It is easy to see that FT(X (k),p) is also given by



H f i v0 1TP (2.1)I i

We have the following:

THEOREM 1. If pE is a first-order feasible descent direction for ELP,

i.e.

T
g PE < 0 (2.2)

and ( )T c = 0 , (2.3)

Vc PE > 0 for all i, a such that c 0

then p is a descent direction for F1 and hence a sufficiently small

step along it must result in a reduction in F1.

Proof. Suppose for the moment that the active set consists of those
(k)

and only those functions which are zero at x , so that we can use

the notation developed for this. We then have ATpE 0, and hence

_ V Tp + p > 0

_V p + p > 0

pP > 0.

It follows from (2.1) and (2.2) that

F (x (k),p) < eTp + ;T p O. ]

9



It is possible for p E to be a first-order feasible direction

without being a feasible direction for ELP. This causes no difficulty-

since u (k+ l)  is set to If(x(k+l))I and hence it is always possible

to obtain a lower feasible point for ELP if (2.2) and (2.3) hold, by

reducing F1  along p.

A second desirable property for p arises from considering

the active set of functions, i.e. those we expect to have the value

zero at x. We wish to choose p so that the first-order change in

these functions predicts that they will all have the value zero at

x (k) + p. An equivalent condition is:

VTp = -f (2.4)

This condition is implied by the following condition on the (n+m)-

vector PE:

AE = -c (2.5)

Strictly speaking, (2.5) is a stronger condition than the pair of

conditions (2.4) and

A pE > -c (2.6)

However, since the only difference is that the variables {u i) are

required to be on their bounds and it will become evident later that

this does not affect the choice of search direction, for simplicity

we will require that pE satisfy (2.5).

Thus we see that one view of ELP is as a device to obtain a

search direction p along which F1  can be reduced in the line search.

10
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We emphasize again that we wish (2.2) and (2.3) to hold so that p

- is a descent direction for F1 , and that the active set nature of the

algorithm indicates that (2.4) and hence (2.5) should also hold.

3. Derivation and Solution of QP Subproblem

The solution of ELP is at a minimum of the Lagrangian function

in the null space of the active constraint Jacobian. The usual method

for solving a general linearly constrained problem is to approximate

the objective function by a quadratic function and then determine

the search direction by solving some appropriate quadratic program (QP).

Consider therefore the quadratic program:

QPl: min T WX(k) (k)) + g TP
PE

subject to T -c

where X(k) is an estimate of X

The constraints of QPl are equivalent to (rearranging equations):

_V p + p = 0

EV p + p - 0 (3.1)

EV p + p - -2Ef

The last two equations imply that

11
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p= (3.2)

T -T p
Since g P e p + ep it follows that p can be obtained by solving

the following QP in only n variables:

QP2: min pTw(xk)X(k))p + eTTp

p

subject to V p = -f

In order to solve QP2 we introduce the matrices Y and Z

defined in Section 1.1. These provide bases for the range and null

spaces of V. The matrices Y and Z may be determined from the

QR factorization of V:

SQ[] [Y z[

0 0

where R is an upper triangular matrix of order t. If V has full

rank and Z TWZ is positive definite, then the unique solution of QP2

may be expressed as the sum of two orthogonal components

P - Ypy + Zpz  (3.3)

where py R t  and pZ ERn-t" We have

12
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'T T
VTp - R py = _f (3.4)

and py is determined entirely by the constraints of QP1. The vector

P is given by the solution of

(ZTWZ)pz = -ZT (v + WYpY) (3.5)

We shall a±so wish to refer to the related QP with homogeneous

constraints:

1T -T--T
QP3: min 2 p Wp + e TV p

P

subject to VTp = 0

The solution to this is given by p = Zqz, where

T T-
(Z WZ)qz = -z Ve • (3.6)

At every iteration of our algorithm an attempt is made to set

the search direction p to the solution of QP2, but for various

reasons this may be inadequate. In subsequent sections we explain what

action is taken in these circumstances.

4. Lagrange Multiplier Estimates

Let us first suppose that x (k) is a minimum on the manifold

defined by the current active set. Then for some X we have

AX - g.

13
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Writing X (X,+ XA ) this is equivalent to

-VZA - VA + VA = 0 (4.1)

_ =e (4.2)

A + X- e (4.3)

Let us therefore define

Ir=A -A (4.4)

Equations (4.1) and (4.2) then reduce to

V7 = -Vfe (4.5)

It follows from (4.3) and (4.4) that the first order necessary condition

A > 0 is equivalent to

7r I <i

where w is w at x. The vector w here plays the same role as the

vector w in the linear case described by Bartels, Conn and Sinclair [5].

The question we face in this section is how to define the vector

of Lagrange multiplier estimates at any point x(k), dropping the

assumption that it is the minimum on the manifold. Multiplier estimates

are needed to define the matrix W and to determine whether constraints

should be deleted from the active set. It is better to use new informa-

tion obtained at the current point x(k) rather than use the multipliers

of the QP solved at the previous iteration. Such an estimate should in

some sense approximately satisfy the overdetermined system based on the

first order necessary conditions:

AA z g . (4.6)

14
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Clearly it makes no sense to delete an active constraint corresponding

to an inactive function, since the corresponding variable u i will be
30 *. .so . S Wb. - .* -*

reduced at the end of the iteration to make the constraint active

again. Similarly, only one active constraint of the pair corresponding

to an active function should be considered for deletion. These facts

combined with the fact that the search direction is being determined

for a QP involving only n variables indicate that a special estimate

taking into account the structure of ELP should be used, as opposed to

the least squares solution of (4.6).

XC : The special estimate for ELP

The special estimate is required to satisfy exactly

those equations in (4.6) which are exactly the same as

the equations holding at the minimum on the manifold defined by the

active set. Thus we define XC to be the least squares solution to the

approximate equation (4.1), subject to the constraint that (4.2) and

(4.3) hold exactly. Equivalently we can define 1C as the solution of

the least squares problem

min iVr + 2 (4.7)

It is then not necessary to explicitly form XCO since checking whether

a component of w is greater than one in modulus is equivalent to

checking whether a component of +  or X- is negative. Furthermore,

using XC to define W results in

15



m-t t t M-t 2

( C)ciji Vi 2 [i V f + (X )V fi a V i) + - (71C) V f
1=1 1=1 t i 1 li

where a- is the ith diagonal element of E. Thus rC may also be

used to define W directly.

The vector wC can be computed directly from the QR factorization

of V which we introduced in the last section to solve QP2. The estimate

is a first-order multiplier estimate in the sense defined in [15].

Because at every iteration computing the search direction involves

only the first n variables of ELP, the multiplier estimate which

is relevant to predicting whether the steepest descent step in a sub-

space of Rn  will be first-order feasible is XC, not the least squares

solution to (4.6). Let us suppose that (wC)j > 1 and that the con-

straint uj -f i(x) is to be deleted from the active constraint set

(i.e. f is to be deleted from the active function set). Define V

as V with v deleted, and Z by

V , Z TZ - In-t+l' Z = [Z z] (4.8)

Now consider the gradient of the linear term in QP2, i.e., VEe. Since

v is being deleted from the active set it should be included in the

gradient of an objective function to be minimized in the null space of

V. Therefore define the steepest descent step in the new null space

to be

Zs -ZZ (ve + vj)

16
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(Here v has a positive sign since (wrC > 1.) We then have the

following result relating the estimate wC to the first-order feasi-

bility of Zs~.
Z

THEOREM 2. Assume V has full rank. If (wC)j > 1, then

VZS > 0

Proof. We have the least squares characterization:

V c = -(I - zzT)V-e

Thus

(z vj)(7C)j . -z Ve

By definition of Zs, we have:
Z

vZs v [Z z] s-

--[0 vTz] zT (~
ii zT

^T T--- T)

- -(v z) (z V e - z v

=-(vz)2 (1- (w > 0

(The fact that V has full rank implies that vj Z # 0 and hence
'T
v z 0.) 0

It follows from Theorem 2 that setting p = Zs defines a
Z

vector pE which is first-order feasible w.r.t. the deleted constraint

17
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u -fj(x), since pE is first-order feasible w.r.t. the retained

active constraint uj fj (x). Note that (7C being > 1 is

equivalent to (XC) Y the multiplier corresponding to the deleted

CCconstraint, being negative. Clearly if O C j < -1 and hence

(A C < 0 then the deleted constraint would be u > f (x), the
-- T -- -

steepest descent step would be -zzT(ve - vj), and this would have

a negative inner product with v..
J

xL: The least squares estimate in the larger space.

Define XL to be the least squares solution to (4.6). It is

worth emphasizing that although the signs of the components of XL

determine the feasibility of steepest descent steps for ELP in the null space

of A with a column deleted (see [101 and [151), the estimate XL is not

relevant to the algorithm we describe for solving the X 1 problem. This is

because (unlike in the minimax case of [15]), it is the range

and null spaces of V, not A, which determine the search direction at

each iteration. Unlike the minimax case, XL and Xc are not scalar

multipliers of each other. It will often be the case that a component

of XC is negative while the corresponding component of XL is

positive, indicating that if the corresponding constraint is deleted,

the steepest descent step (with respect to ELP) in the new null space

in the (ni+m)-dimensional space will not be feasible with respect to

the deleted constraint, while the steepest descent step (with respect

to QP2) in the new null space in the n-dimensional space will be

first-order feasible. The converse is much less likely to happen,

18
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i.e., where a component of XC is positive while the corresponding

component of X L is negative, but it is possible to construct such

an example.

Quite apart from its deficiencies, the estimate XL is more

expensive to compute than Act since it involves the factorization of

a larger matrix. If m is large compared to n, then the additional

effort may be prohibitively high. There is a slight simplification

however: since the last t rows of A have full rank and are

orthogonal to the others, it follows that the last: t equations in

(4.6) must hold exactly and hence a least squares problem of slightly

reduced dimension can be solved.

Clearly it is undesirable to compute AL and we will not

discuss this estimate any further.

1W : A Second-Order Estimate

A second-order multiplier estimate can be defined as the solution

to the consistent set of overdetermined equations

ApW = g + WEPE

The fact that the system is consistent implies that VW can be obtained

from solving

= -Ve - Wp

and there is no concern about solving the larger system. A negative

component of pW does not guarantee that either a steepest descent or

Newton step will be first-order feasible with respect to the deleted

constraint.
19
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Using the estimate I to define W
C

Both the estimates X C and 1W will be used to decide when

to delete functions from the active set. Since a function corresponding

to I(f C) > 1 will not necessarily be deleted from the active set,

we note here that we use nC to define W as follows:

t 2 - m -t 2-

1=l i=l

where

-l if (Qc)i < -i

' if d ci > 1

(ncdi  otherwise.

5. Properties of Solution of QP Subproblem

In this section we examine the properties of the solution to

QP2. Initially, we assume that all functions with zero value are

T
included in the active set, and that V has full rank and Z WZ is

positive definite so that the solution p is given by (3.3), (3.4) and

(3.5) is unique. The corresponding solution to QPI is pEv where

p and p are given by (3.1) and (3.2). We would like PE to

20



satisfy (2.2), (2.3) and (2.5). Clearly the constraints of QPl ensure

that (2.3) and (2.5) hold. Thus the only question is whether pE is

a descent direction for ELP, i.e. whether (2.2) holds. If all the

active functions have the value zero, then the following applies:

T

THEOREM 3. Suppose that f = 0, V has full rank and Z WZ is positive

definite. Then pE' the solution to QPl, is a descent direction for

ELP provided it is not zero.

Proof. We have

g TPE _ e p + e p =e V p by (3.1) and (3.2)

Since f = 0 we have py M 0 and p = Zpz as defined by (3.5). Thus

T .-pzTzp M pT(Z TWZ)pz by (3.5)

Since Z TWZ is positive definite, g TpE must be negative if pZ # 0,

i.e. p O. 0

If p - 0, then by (3.5) ZT We - 0 and x (k)is a minimum on

the manifold defined by the current active constraints, and hence (4.6)

is a consistent set of equations with AC - A Thus either x (k )  is

the required solution, or one of the components of X¢ is negative or

zero, i.e. 1r C)I > 1 for some J.

21
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If p = 0, and at least one of the multipliers is negative,

i.e. (n ) I > 1, then it is necessary to delete a corresponding

function from the active set to obtain a descent direction. If p = 0,

and the component of wC with largest modulus is + 1, corresponding

to a zero multiplier, then x (k ) may or may not be a solution. We

refer to Gill and Murray [10] for the treatment of zero multipliers.

5.1. Nonzero Active Functions

In practice it will rarely be the case that f = 0, so we now

drop this assumption. If we were sufficiently restrictive in the

definition of the active set (e.g. no active functions) we could force

this condition to be true, but it is important for the efficiency of

the algorithm not to be too restrictive in the choice of active set.

It could then happen that pE is an ascent direction for ELP. It is

now necessary to introduce some further notation. We denote the

components of pE which correspond to the orthogonal n-vectors Yp y

and Zpz  by pEY and pEZ respectively. More specifically, we

define:

Ypy F ;:p Z
p -T Yp] and PEZ Z (5.1)

-rl 0

We have P E PEY + PEZ"

22
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Without the assumption that f = 0, both PEY and pEZ could

be ascent directions for ELP. If either component is a descent direction

it is possible to take a weignted combination as the search direction.

Also, if Z Te # 0, the component pEZ can be replaced by the follow-

ing, which must be a descent direction:

Zqz Z

0

where Zqz is the solution to QP3 and q is given by (3.6).

When Z TvEe = 0 and PEY is an ascent direction for ELP, it

is necessary to delete a function from the active set to obtain a

descent direction. It is foolish to simply delete the active function

with the largest absolute value. The following theorem shows that,

in this situation, a constraint can always be found with a negative

multiplier estimate. The interpretation of pEY being an ascent direction,

regardless of the magnitude of II zTvf ell , is that too many functions

have been selected to be active and are being forced to be approximately

zero at x (k ) + p, thus forcing the inactive functions to increase in

modulus more than the active ones are decreasing. Therefore the follow-

ing is also useful when Z Tve 0.

THEOREM 4. Assume V has full rank and let pEY be defined by (5.1).

T
If g pEY > 0, then for some j either f > 0 and (wC)j >1, or

f < 0 and (wC)j < -1.
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T

Proof. It follows from g pEY > 0 that

STIVTypy _ > 0
e YV - e Ef > 0

A characterization of the solution of the least squares problem (4.7) is

VrC . _YYTNe

Multiplying both sides by Ypy, we have from (3.4) that

and hence

Therefore for some J, (irC> j fj > IfjI and the result follows.

T

It also follows from the above that if g PEY 0, then either

f - 0 (covered by Theorem 3) or the maximum element of w in modulus

is one (the minimum multiplier estimate is zero). It is worth noting

that Theorem 4 does not hold in general if other multiplier estimates

such as XL and V are substituted for XC*

It follows from Theorem 4 in conjunction with Theorem 2 that

if PEY is an ascent direction we can delete the active constraint

corresponding to a negative component of XC to obtain a first-order

feasible direction. As in [15], we will not actually take the steepest

descent direction Zs~ in the new null space. Instead, we will first
Z

try computing the Newton step Zq, defined by (4.8) and
Z
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(Z W )q~ = _Z T(VFe + sgn(w )jvj)
Z

th
where the j- active function was deleted. If Zq. is first-order

Z
feasible with respect to the deleted constraint, we take as our search

direction yYpi + Zq. for some y, 0 < y < 1, where Y spans the range
Z th

of V and pi is defined by removing the jt equation from (3.4).

Otherwise we replace Zq. by Zr., where
Z Z

qzis given by (3.6) and z by (4.8). The proof that Zr. is a
Z

descent direction and is first-order feasible combines the methods

of proof of Theorem 5 of [15] and Theorem 2 above in a straightforward

way, so we do not present it here.

We do not wish to minimize on manifolds but to delete constraints

early when the multiplier estimates become sufficiently reliable. The

above discussion of the step to take after deleting aconstraint applies
T

to this situation as well as to the situation when g PEY > 0. Both

xC and U W are computed when possible so that they can be compared.
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5.2. Avoiding a Rank-Deficient Jacobian or an Indefinite Projected Hessian

The methods used to avoid a rank-deficient matrix V or an indefi-

nite matrix Z TWZ are identical to those used in 115]. In the former case,

instead of ordering the potential columns of A by the size of {c.}J

we order the potential columns of V by the size of {If I} in the QR

factorization of the Jacobian.

6. Quasi-Newton and Finite Difference Approximations to the Hessian

In practice we may wish to use a quasi-Newton or finite

difference approximation to W rather than the analytical Hessians

{V2f i. The main difference between the t and minimax cases in this

regard is that for the Z case, W involves Hessians of all the m

functions {fi) , while in the minimax case W involves the Hessians

of only the t active functions. Thus a finite difference approxi-

mation to W requires extra gradient evaluations of all m functions

at each iteration instead of just those t which are active. Since

for many applications (particularly arising from data approximation)

m is much larger than n and hence t, this means that finite

difference approximations may be considerably more expensive than a

quasi-Newton approach for an 1i problem, while a finite difference

approximation may be more efficient for a comparable minimax problem.

Note, however, that the extra evaluations of each gradient need only

be done n-t times, along each column of Z.
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7. Determining the Steplength

We use a special steplength algorithm tailored to the t1 problem

to obtain the steplength a at each iteration. This algorithm is pre-

sented in [14]. The initial step a 0  is set to either one, or the

shortest estimated step to a zero of an inactive function, if this is

less than one. Thus

a0 W min{l,a;},

where

a = in 0 and - < 0

viP viP

8. Selecting the Active Set

Currently we use the same active set strategy as that described

for problem L.P in [15], with some slight modifications, as follows.

We define the scaled function values by Ci = (mIfi1)/F V Since there

may be no active functions the first decision is whether to include

the smallest one (in absolute value) in the active set. This decision

is made in the same way as the decision of whether to include a second

active constraint in the minimax case, replacing the gradient v I by

the gradient of the 1 function when no functions are active, i.e.

V2e.
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9. Relationships to Other Algorithms

We begin this section by discussing algorithms for problem

1 Pwhen the functions {f I are linear. The equivalent problem ELP

is then a linear programming problem, although it is not in standard

form. The connection between the linear Z1 problem and linear pro-

gramming (although using a different formulation from ELP) was observed

by Charnes, Cooper and Ferguson [6]. Since then a large number of

different methods have been proposed for solving the linear Z1 problem

by various linear programming formulations. References to many such

methods may be found in [2,3,4,19). Pr2'ably the most widely used

method is that of Barrodale and Roberts (3], which solves a variation

of ELP put in standard form by a primal simplex method taking account

of the special structure. An alternative approach taken by Claerbout

and Muir [7] and Bartels, Conn and Sinclair [5] is to solve the problem

directly by minimizing the piecewise linear function. However, it is

possible to think of these methods as linear programming methods applied

to ELP, by considering the connection between the vector w in Bartels,

Conn and Sinclair (which corresponds to w in our nonlinear algorithm)

and the simplex (Lagrange) multipliers of ELP, just as we do for the

nonlinear problem. This is the approach we prefer since it retains

the familiar linear programming terminology while avoiding transforming

ELP to standard form.

A completely different approach to the linear 11 problem is

to solve a sequence of weighted least squares problems as the Lawson

algorithm (see [17]) does for the linear 1. problem. This was suggested
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by Schlossmacher [18] but Gallant and Gerig [9] show that this method

can be unstable.

It is somewhat surprising, given the number of linear 1

algorithms, that there has been comparatively little work done on

the nonlinear £1 problem. Osborne and Watson [16] solve the nonlinear

91 problem by solving a sequence of linear El problems. The solution

to each linear E1 problem, obtained by a linear programming technique,

is used as a search direction along which the minimum of F1 is found

by an exact line search. We are aware of only two published methods

for the nonlinear k1 problem which use second-order information, both

of which appeared only recently. El-Attar, Vidyasagar and Dutta [81

suggest a method related to the penalty method for nonlinear programming

in which a sequence of increasingly ill-conditioned unconstrained

optimization problems are solved. McLean and Watson [13] propose both a

first-order Levenberg-type of method similar to those of [1,12] for

the minimax problem, and a method which uses second-order information.

The latter is a two-stage method similar to that of Watson [20] for

the minimax problem, in which successive linear programming problems

are solved until it is thought that the active set has been identified,

whereupon a switch is made to solving a system of nonlinear equations

by Newton's method. The system has order n+t, since the variables and

multipliers are obtained together. Since t may often be close to n

(t equals n in the linear case), the systems of equations which are

solved may be much larger than the ones we solve.
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We are not aware of any published methods of the projected

Lagrangian type for problem k P , although we understand that Bartels

and Conn are currently doing some related work. It would be possible

to construct a method related to ours but which solves an inequality-

constrained quadratic program variant of QPl at each iteration as Han

[11] does for the minimax problem. However, such a QP has n+m variables

and it is not possible to transform this directly to an inequality-

constrained QP in n variables (as we transform QPI to QP2). It would

be necessary to solve the inequality-constrained QP by a special-purpose

method taking into account the special structure, just as the Bartels,

Conn and Sinclair method essentially solves the linear program equivalent

of ELP by a special-purpose method. See [15] for remarks concerning the

relative merits of solving the equality and inequality-constrained QP's.

The remarks on asymptotic local quadratic convergence made in

(15] for the minimax problem carry over without difficulty to our

algorithm for I P .

10. Computational Results

We present the results of applying the algorithm to 11

problems with the same definitions of {fi(x)) as the first four

problems presented in [15]. The solutions obtained are listed below.
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Problem 1.

* * T
F1(x) = 0.12434 with x - (0.10094, 1.52515, 1.97211)

Problem 2.
* *T

F1 (x) - 0.0038768 with x - (0.19337, 0.19377, 0.10893, 0.13973)
T

Problem 3.

F1 (X) - 1.00000 with x = (0.0000, 0 .00 02)T.

Problem 4.

* * T
Fl(x) = 7.8942 with x - (0.53597, 0.00000, 0.031918)

The results are summarized in Table 1. The termination conditions

-6 1ZT -~j 6 T
were that 11fll2 < 10- , I <zII < 10- , Z WZ numerically positive

definite and AC > 0. The line search accuracy parameter n was set

to 0.9 (see [14] for the definition of this parameter). Several other

choices of n were tried, but n - 0.9 was the most efficient, indi-

cating as expected that a slack line search is desirable at least

on these problems. The machine used was an IBM 370/168 in double

precision, i.e. with 16 decimal digits of accuracy. The column headed

NI reports the number of iterations required, which is also the number

of times the Hessian was approximated using finite differences. The

column headed NF gives the number of function evaluations (not including

gradient evaluations for the Hessian approximation).
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TABLE 1

Problem n m n-t NI NF

1 (Bard) 3 15 0 20 20

2 (Kowalik and Osborne) 4 11 0 11 14

3 (Madsen) 2 3 0 15 15

4 (El-Attar et al. #2) 3 6 2 10 11

These results demonstrate that our algorithm can be very efficient.

Final quadratic convergence was observed in all cases. The results must

however be regarded as preliminary since further work needs to be done

regarding the active set strategy.

11. Concluding Remarks

The nonlinear I1 optimization problem has been shown to be as

tractable as the nonlinear minimax problem using a projected Lagrangian

algorithm closely related to that of [15]. Although the nonlinearly

constrained optimization problem which is equivalent to LI P involves

a extra variables, we have shown how to derive a method which solves

successive quadratic programing problems in only n variables. The

different roles of multiplier estimates and directions of search in

the (n4m)- and n-dimensional spaces have been emphasized.
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We could repeat many of the concluding remarks of [15] here.

In particular we observe that linear constraints can be incorporated

into the algorithm but that nonlinear constraints increase the

complexity of problem 1 1P to that of the general nonlinear constrained

optimization problem. In summary, the method of this paper has been

designed to take advantage of all the special properties of the 1

problem which are not available for general constrained optimization

problems.
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